评论

Mobileye强烈diss特斯拉、端到端和英伟达

深陷业绩泥潭的Mobileye为了反击公众对其技术路线的质疑,特别在2024年10月1日召开了投资者大会,会上详细解释了Mobileye技术路线的优越性,对特斯拉、端到端和英伟达Orin都提出了质疑和批判,甚至顺便批评了GPT4o。

图片来源:Mobileye

Mobileye的CAIS就是Compound AI Systems 复合人工智能方案,实际还是人工定义规则方案,MTBF即Mean time between failures平均故障间隔时间,也就是多久出现一次故障 。Mobileye表示其与汽车制造商的合作中,MTBF 目标是 10的7次方小时的驾驶时间。而特斯拉MTBF是多少呢?

图片来源:Mobileye

特斯拉最先进的FSD 12.5平均每300英里就要人工接管一次,MTBF顶多是10小时,跟Mobileye的10的7次方有天壤之别。

图片来源:Mobileye

接下来Mobileye开始批判端到端路线,端到端要想成功,前提至少有两点,首先是没有glue code胶合代码,其次是训练数据必须都是正确的,没有错误示范,这意味着必须加入人工干预,也就是说真正的端到端完全不存在,端到端是将Glue code转变到线下,需要人类来挑选高质量正确的数据用于训练。

图片来源:Mobileye

对端到端来说只有正确和不正确两种状况,但是加入人工因素,就复杂了,例如上面三种,1是轻微无视交通规则,2是加塞,3是鲁莽驾驶,3种都可以算正确也可以算不正确。RLHF即Reinforcement Learning from Human Feedback人类反馈的强化学习。

图片来源:Mobileye

接下来Mobileye批评了GPT4o,这个看起来很牛的数千亿参数的大模型,能做好20*20的乘法表吗?当然不能,错误率超过60%。端到端学习通常会遗漏那些重要的抽象逻辑信息,端到端实际是记忆,而非学习,学习是可以获得抽象内涵逻辑的。

图片来源:Mobileye

Mobileye继续diss端到端,毫米波雷达和激光雷达都是简单系统,但视觉系统很复杂,端到端的简单融合,根本就没有效果,远不如CAIS的高级融合。

图片来源:Mobileye

Mobileye认为端到端没有抽象规则的注入,会产生Variance,会自行生成错误,而有人工定义的抽象规则注入,顶多是Bias偏差,偏差当然比错误要好,这就是说端到端数据少了容易过拟合,失去泛化能力,数据多了会因为错误示范数据产生错误。

接下来Mobileye开始diss端到端的核心:transformer架构。

图片来源:Mobileye

没有用链条规则,那么维度是10的32次方,计算成本极高,如果加入链条规则,维度变为100,计算成本降低99%。

Mobileye认为FCN全连接具备更高的效率,比RNN类型的transformer好多了。

图片来源:Mobileye

Mobileye说的transformers似乎是带有自注意力的稠密网络即Vanilla Transformer。

图片来源:Mobileye

CNN骨干网简洁高效,而transformer对算力和存储的消耗惊人,即便是最低的10Hz帧率就要100TOPS算力,每个token高达100Mb,9600个tokens是9600*100/8=120GB。这个实际无需Mobileye提出,目前包括特斯拉都还是使用CNN骨干网,即便是用英伟达单张H100也无法实现全Transformer,存储的容量和带宽成本比算力还高。尽管没人承认自己还在用老旧的CNN,但目前任何一个量产项目都离不开CNN骨干网。

图片来源:Mobileye

Mobileye继续抨击Transformer,指责其效率太低,自连接高达3170亿个,而FCN只需要10的4次方个。

图片来源:Mobileye

最后Mobileye对端到端做了总结,第一条就指责transformer效率太低,完全是暴力拟合,拼的就是算力。

图片来源:Mobileye

Mobileye提出稀疏型注意力而非连接众多的自注意力。

图片来源:Mobileye

也就是并行自回归网络,将token分级,每一级与每一级之间才有连接,才有self attention,分级内部不再连接,大大减少了计算强度,不过transformer的核心就是self attention,这种人工规则将transformer的性能大打折扣,transformer的奠基论文正是《Attention is All You Need》

图片来源:Mobileye

Mobileye总结,效率比传统transformer高100倍,所以不需要那么高的算力。

图片来源:Mobileye

最后Mobileye力推自己的EyeQ6H,算力跟英伟达Orin差8倍,但ResNet50每秒帧率只差两倍,显然EyeQ6H性价比更高。

图片来源:Mobileye

最后还是Mobileye对自己芯片的介绍,即五大计算资源,MIPS-通用CPU,用于标量和逻辑运算,MPC(Multithreaded Processing Cluster)-专门用于线程级并行的CPU,VMP(Vector Microcode Processor),使用超长指令宽度(VLIW)-单指令多数据(SIMD);专为定点算法的数据级并行性而设计(例如,将12位原始图像收敛为一组不同分辨率和色调图的8位图像);基本上,对整数向量执行操作PMA(Programmable Macro Array)-粗粒度可重构阵列(CGRA);为数据级并行设计,包括浮点运算;基本上,对浮点数向量执行操作。XNN-专注于深度学习的固定函数:卷积、矩阵乘法/完全连接和相关激活后处理计算:例如CNN、FCN。这些都是Mobileye在10年前就确定的计算资源,似乎Mobileye不愿做出改变,或者不能做出改变,这样的计算架构很难同时兼顾高算力和成本。

图片来源:Mobileye

Mobileye的路线是模块化,或许是研发成本太高,亦或高价芯片不是Mobileye主要客户能接受的,Mobileye似乎不打算推出高算力芯片,EyeQ6H会一直沿用,算力不够就增加芯片数量,不过即使4个EyeQ6H算力能够叠加,也不过136TOPS,更何况低成本的以太网交换机是不可能让算力无损失叠加的。

Mobileye对特斯拉和端到端的指责当然是正确的,transformer当然也是纯粹靠蛮力拟合,缺乏技巧,但这就是目前AI的主流,transformer是一切大模型的源头,当今AI的主流就是拼算力,不讲效率和技巧,Mobileye想对抗AI主流,无疑是螳臂当车。特别是在中国,端到端,特斯拉(马斯克)都被追风,各厂家都在宣传自己的端到端能力如何强大,整个舆论风潮已经将端到端和特斯拉推上神坛,消费者迷信端到端和特斯拉。如此形势下Mobileye逆潮流而动,勇气可嘉,但恐怕要完全失去中国市场。中国市场除非是苹果、特斯拉和华为这样的超级巨头能够引领或教育消费者价值观,中小企业只能顺应消费者价值观,虽然Mobileye说的都是事实,但逆潮流而动,一样会被消费者抛弃,消费者要的是他认为的“真理”。

免责说明:本文观点和数据仅供参考,和实际情况可能存在偏差。本文不构成投资建议,文中所有观点、数据仅代表笔者立场,不具有任何指导、投资和决策意见。

更多佐思报告

佐思2024年研究报告撰写计划

智能网联汽车产业链全景图(2024年8月版)

云端和AI
车云 OTA研究 自动驾驶仿真
汽车云服务研究 自动驾驶地图
TSP与应用服务 V2X和车路协同
数据闭环研究 路侧智能感知
车路云一体化研究
AI大模型 汽车AI大模型研究 AI大模型对整车智能化影响
座舱AI Agent 车载AI Agent产品开发与商业化
智驾系统集成和应用层
自动驾驶应用框架 ADAS与自动驾驶Tier1-国内 本土车企ADAS
ADAS与自动驾驶Tier1-国外 国外OEM ADAS研究
L3/L4级自动驾驶和初创企业 理想L8/L9功能拆解
智能驾驶Tier1前10强对比
自动驾驶算法和系统 端到端智驾研究 行泊一体研究
冗余系统 舱泊一体
智驾融合算法 舱行泊融合
汽车视觉算法 无人配送车
领航辅助驾驶(NOA)
感知 毫米波雷达 汽车视觉
激光雷达研究 红外夜视
激光雷达核心部件 车用超声波雷达
软件定义雷达 车载摄像头Tier2
智舱系统集成和应用层
智能座舱应用框架 智能座舱Tier1 座舱设计趋势
智能座舱平台
座舱显示 车载VR/AR/MR研究 HUD产业链
仪表和中控显示 电子后视镜
座舱多屏与联屏 行车记录仪
HUD产业研究 智能玻璃
座舱交互 车载语音 车载香氛与空气净化
舱内监控研究 汽车音响
汽车多模态交互 智能表面
手势交互发展
座舱互联娱乐与生态 汽车生态域 自主品牌车联网
汽车数字钥匙 合资品牌车联网
车载支付 新势力品牌车联网
车载信息娱乐 商用车车联网
汽车eCall系统 商用车智能座舱
座舱其他 汽车舒适系统 智能车门
汽车照明 上海车展75项趋势
车载无线充电 两轮车智能化
OS和支撑层
SDV框架 软件定义汽车 汽车软件业务模式
基础软件/系统平台 AUTOSAR研究 汽车操作系统
数字仪表OS
信息安全/功能安全 汽车信息安全 汽车功能安全
电子电气架构层
E/E架构框架 E/E架构 汽车电子代工
48V低压供电网络
智驾域 自动驾驶SoC ADAS域控组件
自动驾驶域控
座舱域 智能座舱平台 座舱域控
座舱SoC 8295座舱域控制器拆解
车控域 车身(区)域控研究 汽车VCU研究
电驱动和动力域控制器
通信/网络域 车内通信芯片 商用车T-Box
无线通讯模组 高精度定位
汽车网关 车载天线
乘用车T-Box 汽车UWB研究
跨域融合 多域计算和区域控制器
区域和中央计算 车身(区)域控研究
其他芯片 汽车MCU研究 车用RISC-V研究
车载存储芯片 传感器芯片
电源管理芯片 汽车CIS研究
动力层
动力 混合动力报告 电源管理芯片
800V高压平台 电驱动与动力域研究
IGBT及SiC研究
能源 一体化电池 充换电研究
燃料电池 移动充电机器人
固态电池 数字电源及芯片
其他 热管理系统 一体化压铸
机械层
底盘/执行 乘用车底盘域控 电控悬架
线控制动&AEB 智能转向关键组件
转向系统 商用车智能底盘
其他宏观
车型平台 车企模块化平台 主机厂车型规划研究
出海 主机厂海外布局
政策、标准、准入 智驾法规和汽车出海 自动驾驶标准与认证
AI机器人 PBV及汽车机器人 无人配送车
移动充电机器人 飞行汽车

佐思研究月报

ADAS/智能汽车月报 | 汽车座舱电子月报 | 传感器月报 | 电池、电机、电控月报 | 车载信息系统月报| 黑科技月报

联系方式

(手机号同微信号)返回搜狐,查看更多

责任编辑:

平台声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。
阅读 ()