过去五年来,数百位科学家齐聚美国长岛的布鲁克海文国家实验室中,利用一台威力强大的新粒子加速器,来模拟宇宙创生时刻的环境。这台加速器被称为“相对论性重离子对撞机”(缩写为RHIC,读作“瑞克”),它让两束接近光速运行,但方向相反的金原子核迎头相撞。 这些原子核之间的成对碰撞,产生出极其炽热和致密的物质能量爆发,模拟了大爆炸(thebigbang)最初几微秒内发生的情况。这些短暂的微型大爆炸(minibang)给物理学家提供了近距离观察创世之初的绝佳机会。
在宇宙诞生之初,物质是一种超炽热、极致密的东西,由一些被称为夸克(quark)和胶子(gluon)的粒子组成,它们到处乱跑,横冲直撞。少量的电子、光子和其他较轻的基本粒子给这锅“浓汤”配上了调料。这种混合物的温度高达上万亿℃,比太阳核心还要炽热10万倍以上。
但是,温度会随着宇宙的膨胀而直线下降,就像今天一团普通气体在迅速膨胀时会冷却一样。夸克和胶子的速度大为减慢,以致其中一部分开始能暂时地粘连在一起。将近10微秒时间流逝之后,夸克和胶子被它们之间的强作用力(strongforce)捆绑在一起,永久地囚禁在质子(proton)、中子(neutron)和其他强相互作用粒子之中,物理学家将它们统称为“强子”(hadron)。物质属性的这种突然改变被称作相变(phasetransition,比如液体水冻成冰就是相变)。从最初的夸克—胶子混合物转变成平凡的质子和中子,宇宙的这场相变引起了科学家浓厚的兴趣,其中一些人想寻求线索来理解宇宙演化成目前高度有序状态的过程,另一些人则希望更好地了解夸克和胶子所涉及的基本作用力。
质子和中子构成了今天的每一个原子核,它们都是那片原初粒子海洋遗留下来的水滴,是微小的亚原子囚室——夸克左冲右突,却被永远地囚禁其中。即使在剧烈碰撞中,夸克看似就要脱缰而出,新的“墙壁”又会形成,将它们继续禁锢在一起。尽管许多物理学家都曾尝试释放它们,但还没人亲眼目睹过一个孤单的夸克独自从粒子探测器中滑过。
RHIC为研究人员提供了一个绝好的机会,来观察从质子和原子中释放出来的夸克和胶子,它们处于一种集体的准自由态(quasi-freestate),就像宇宙最初几微秒内的物质一样。理论学家最初将这种混合物称为夸克—胶子等离子体(quark-gluonplasma),因为他们预计混合物的行为会像一团超炽热的带电粒子气体(即等离子体),就像闪电内部的气体一样。通过把重原子核对撞在一起,创造出短暂释放夸克和胶子的微型大爆炸,RHIC起到了时间望远镜的作用,使我们得以窥探刚出生的宇宙。那时超高热、极致密的夸克-胶子等离子体还占据着绝对优势。目前RHIC最令人吃惊的发现是,这种奇异物质的行为似乎更像一种液体,而不是气体——尽管这种“液体”的性质非常独特。
释放夸克
1977年,理论学家史蒂文·温伯格(StevenWeinberg)出版了他的经典著作——讲述早期宇宙物理学的《最初三分钟》(TheFirstThreeMinutes)。当时,他拒绝给宇宙最初的1/100秒作任何决定性的结论。“我们只是对基本粒子物理了解得还不够,没有任何把握能计算出这种混和物的性质,”他遗憾地说,“因此我们对微观物理的无知就像一层面纱,阻断了我们遥望宇宙开端的目光。”
但是,就在20世纪70年代,理论和实验的突破很快开始揭开这层面纱。不仅质子、中子和其他所有强子,都被发现包含着夸克;而且,一种有关夸克之间强作用力的理论——所谓的量子色动力学(即QCD)也在70年代中期浮出水面。这种理论假定被称为胶子的8种假想的中性粒子,在夸克之间飞来飞去,传递着无情的作用力,将夸克禁闭在强子内部。
QCD理论格外迷人的地方就在于,与常见作用力(比如引力和电磁力)的行为相反,这种结合力会随着夸克彼此靠近而变弱——物理学家把这种古怪的反常行为称作渐近自由(asymptoticfreedom)。这意味着,当两个夸克之间的距离远远小于一个质子直径(约10-13厘米)时,它们受到的作用力会减小,物理学家就可以依靠标准的技术将作用力计算得非常精确。只有当夸克开始远离它的同伴时,这种力量才会真正变强,将这个粒子猛拉回来,就像一只脖子被拴住的狗一样。
在量子物理中,粒子之间的短距离是与高能碰撞联系在一起的。因此,在高温下,当粒子被紧紧地挤压在一起,彼此之间不断地发生高能碰撞时,渐近自由就变得很重要了。
QCD的渐近自由比其他所有因素都更为重要,正是它让物理学家揭开了“温伯格的面纱”,推算出宇宙诞生后最初几微秒内的情景。只要温度超过大约10万亿摄氏度,夸克和胶子的行为实际上就完全独立了;甚至在更低的温度下,比如2万亿摄氏度时,夸克应该也可以单独游荡——尽管那时,夸克应该开始感受到QCD约束力在扯它们的后腿了。
为了在地球上模拟出这种极端环境,物理学家必须再现宇宙诞生最初几微秒内超高的温度、压强和密度。对一群相同的粒子来说,温度实际上就是单个粒子的平均动能,而压强则随着这群粒子的能量密度增大而增长。因此,通过将尽可能多的能量挤压到尽可能小的体积中,我们就拥有了模拟大爆炸条件的最佳机会。
幸运的是,大自然提供了唾手可得的、极其致密的物质团块——原子核。如果你能设法聚集起大拇指尖那么多的核子物质,它将重达3亿吨!30年来,利用诸如铅、金之类的重原子核进行的高能对撞实验,已经证明碰撞发生时的密度,远远超过普通的核子物质,所引起的温度可能也超过了5万亿摄氏度。
每个重原子核包含的质子和中子总数大约为200个,它们碰撞所产生的“炼狱”,要比单个质子的碰撞(常用于其他的高能物理实验)巨大得多。这种重离子碰撞产生的,不是只有几十个粒子飞散出来的小型爆炸,而是一团包含着上千个粒子的沸腾火球。足量的粒子纠缠在一起,使得这团火球的集体性质——温度、密度、压强和黏度(它的黏稠度或抵抗流动的能力),变成了能够利用的重要参数。这种区别很重要——就像少量孤立的水分子和一整滴水之间的性质差异一样。
RHIC实验装置
由美国能源部出资、布鲁克海文国家实验室运转的RHIC,是产生和研究重离子碰撞的最新设备。较早的核子加速器将重原子核束射向固定的金属标靶。RHIC则大不相同,它是一台可以让两束重原子核对撞的粒子对撞机。对于速度相同的粒子来说,迎头相撞产生的能量要大得多,因为所有可用的能量都投入到制造破坏上了。这很像是两辆超速行驶的汽车迎头相撞的情景——它们的动能被转化成四处飞溅的零件和残骸的随机热能。
当核子处于RHIC产生的相对论性高能状态时,以超过99.99%的光速运行,其中每个质子或中子的能量,都高达100吉电子伏特(GeV,1GeV大约相当于一个静止质子的质量)。两排共870块超导磁铁,在数吨液氦的冷却下,驾驭着粒子束围绕两个相互交错的全长3.8千米的圆环旋转。这些粒子束会在圆环交错的其中4个位置上发生碰撞。4台先进的粒子探测器——BRAHMS、PHENIX、PHOBOS和STAR,在这些撞击点上记录着从剧烈碰撞中飞溅出来的亚原子碎片。
当两个金原子核以RHIC所能达到的最高能量迎头相撞,它们会将总量超过两万GeV的能量,倾注到一个直径只有万亿分之一厘米的微观火球之中。这些核子以及构成它们的质子和中子会真正熔化,从所有可用的能量中,创造出更多的夸克、反夸克(antiquark,夸克的反物质)和胶子。一场典型的对撞会短暂地释放出超过5,000个基本粒子。碰撞瞬间产生的压强极其巨大,是大气压强的整整1030倍,火球内部的温度也会激增到上万亿摄氏度。
但在大约5×10-23秒之后,所有的夸克、反夸克和胶子都会重新结合成强子,向外飞散,溅到周围的探测器上。在强大计算机的帮助下,这些实验设备试图尽可能多地记录下抵达探测器的上千个粒子的信息。其中两套实验装置——BRAHMS和PHOBOS相对较小,专门观测这些碎片的特殊性质。另外两套——PHENIX和STAR,则围绕着巨大的通用设备而建,这些设备用上千吨磁铁、探测器、吸收器和防护设备塞满了3层楼高的实验大厅。
4套RHIC实验装置是由不同国际小组设计、建造和运行的,它们拥有60到500多位数量不等的科学家。每个小组都采用了不同方法,来处理异常复杂的RHIC事件所设下的艰巨挑战。BRAHMS合作小组选择专注于残留下来的原始质子和中子,它们高速前进的方向与碰撞前的金原子核相近。PHOBOS刚好相反,它在尽可能广阔的角度范围内观测粒子,研究它们之间的关联。STAR围绕着世界上最大的“数码相机”而建,是一个巨型气柱,可以为射入粒子束轴(beamaxis)周围很大半径范围内的所有带电粒子,提供三维图像[译注:这里的三维图像实际上是带电粒子的飞行轨迹]。而PHENIX则搜寻着碰撞极早期产生的特殊粒子,它们能够从夸克和胶子的沸腾熔炉中安然无恙地脱逃。因此,这些特殊粒子为火球的内部深处提供了某种类似于X射线的透视图像。 |